AD-A059 840 0-5 WADNE-VAL-322 Teknisk notat, VM-318 Reference: 336/130 Date: May E978 CALCULATION OF PRESSURE AND TEMPERATURE FROM EXPLOSIONS IN CONFINED SPACES. by E Strømsøe (1) (0) CD M Con d DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited Kjeller 2 May 1978 Reproduced From Best Available Copy 20011011 082 # LOVELACE BIOMEDICAL AND ENVIRONMENTAL This decument has been exproved for public release and sale; its istribution is unlimited. FORSVARETS FORSKNINGSINSTITUTT Norwegian Defence Research Establishment PO Box 25 - 2007 Kjeller Norway TERRISK BOTAT VM-318 CALGULATION OF PRESSURE AND TEMPERATURE FROM EXPLOSIONS IN CONFINED SPACES by E Stromage FORSUARETS FORSKHINGSINSTITUTT NORWEGIAN DEFENCE RESEARCH ESTABLISHMENT PO Box 25 -N-2007 Kjehot, Norwey 8 09 29 CALCULATION OF PRESSURE AND TEMPERATURE FROM EXPLOSIONS IN CONFINED SPACES INTRODUCTION 1 yeu m In a previous report \$A\$) estimates were made of the post-detonation pressure and temperature when TNT charges detonat in a closed chamber at loading densities varying from 0.2 to 270 kg/m³. An important simplifying assumption was that reaction products other than C, CO, CO₂, H₂, H₂O and N₂ could be neglected. For TNT this introduces no serious error as long as the post-detonation temperature remains below about 2900 K, i.e. for all loading densities except the range 0.3 to 1.2 kg/m³, where oxygen balance is nearly obtained. For explosives with a higher detonation energy (eg RDX and PETN) this simplification is advisable only for loading densities well below those corresponding to oxygen balance. The objective of the present report is to present a refined and more general approach to this problem, particularly in the sense that many more explosion products are considered. #### 2 ASSUMPTIONS The following assumptions are made: - The detonation and subsequent afterburning take place in a closed, rigid and thermally insulated chamber so that energy loss can be neglected - The explosion gases can be described by the ideal gas law - Chemical equilibria will be established within the time considered - For C-H-N-O explosives these explosive products are considered: C(s), CO(g), CO₂(g), H₂(g), H₂O(g), O₂(g), N₂(g), OH(g), NO(g), H(g), O(g), NH₃(g), CH₄(g). For aluminized explosives by the additional products Al₂O₃(s/l), Al₂O(g) AlO(g), Al₂O₂(g), Al(g) - The air composition is approximated by 21 per cent (by volu O_2 and 79 per cent N_2 - The initial temperature and pressure are 298 K and 1.013 barespectively ### 3 CALCULATION PROCEDURE The datails of the calculation procedure have been described elsewhere (2). The main steps are: - a) Assume preliminary values for p (pressure) and T (temperat: - b) Calculate composition of explosion products from material balances and chemical equilibria, and also n = total number of gaseous moles - c) Find AH (enthalpy change) from enthalpy data for explosive: and products - d) Transfer enthalpy to energy (ΔE, constant volume) by adding the term Δn RT, where Δn is the increase of the number of gaseous moles and R is the gas constant - e) Use ΔE and c_V -data (heat capacity at constant volume) to find T - f) Use gas law to find p from T and n - g) Compare calculated values of p and T with assumed values. If necessary, assume new values for p and T and repeat sequence b-g. The thermochemical data have been taken from ref (3-5). * This means that use has been made of the convention that the energy change is positive for an exothermic reaction. # RESULTS Calculations have been performed for three C-H-N-O high explosives: - TNT C7H5N3O7 - RDX C3H6N6O6 - PETW C5H8N4O12 and for two commonly used compositions containing alumin H-6 (45% RDX, 30% TNT, 20% A1, 5% wax) HBX-3 (31% RDX, 29% TNT, 35% A1, 5% wax) The results (temperature and pressure as funtion of load density) for these are shown in figures 4.1 - 4.2. More detailed results, giving the composition of the explosic products, are presented in tables 4.1 - 4.2. In order to study the effect of aluminium in more detail calculations were further performed for compositions of TNT/Al with Al-content ranging from 10 to 40%. The resular shown in figures 4.3 - 4.4. Finally four fuel-air explosives (FAE) were studied: | - Methane CH4 | energy content | 50.2 | kJ/g | |---|---|------|------| | - Acetylene C ₂ H ₂ | 4 | 48.3 | • | | - Ethylene oxide C2H4O | | 27.8 | ** | | - Propane C3H6 | - 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (| 46.5 | \$1 | The results are shown in figures 4.5 - 4.6. It should be noticed that both temperatures and pressur are presented as absolute values. #### 5 DISCUSSION # 5.1 C-H-N-O high explosives The thermodynamic data used for these explosives are thought to be highly reliable. Also the assumptions made in chapter 2 are fairly realistic for the loading densities considered here. For higher values of the loading density, resulting in pressures of the order of 100 bars or more, real gas effects can no longer be neglected. Experimental data presented by Weibull (6) and by James and Rowe (7) are in fair agreement with the present results. Previous calculations (1, 8) have usually neglected various endothermic reactions, which become increasingly more important for temperatures exceeding about 2500 K: $CO_2 + CO + \frac{1}{2} O_2$ $0_2 + H_2 + 20H$ $0_2 + N_2 + 2NO$ $H_2 \rightarrow 2H$ $0_2 + 20$ Consequently, energies, temperatures and pressures are overestimated. For TNT the simple methods are fairly accurate, the greatest deviation for the pressure is about 10% in the range near oxygen balance. For RDX and PETN pressure deviations of 20% or more can easily be obtained when the composition is estimated by simplified methods. It has been claimed (ref &, figure 7) that fair agreement with experimental data has been obtained by simple methods at high loading densities for RDX/wax. It seems likely that this apparent agreement is due to two counteracting effects, neglect of endothermic reactions and ideal gas assumption. # 5.2 Aluminized high explosives The thermodynamic data for the various aluminium oxides $(Al_2O_3,\ Al_2O,\ Alo\ and\ Al_2O_2)$ are probably less reliable than corresponding data for explosion products from C-H-N-O explosives. For instance, estimates of the boiling point for Al_2O_3 vary from 3250 K (9) to 3770 K (5). Ref (3, 4) which are the main sources for the present report, do not contain data for $Al_2O_3(l)$ for higher temperatures than 3500 K so for these temperatures extrapolation was necessary. One should therefore not have the same confidence in the resu for aluminized explosives as in the results for C-R-N-O eksplosives. This is particularly true at the highest temperatu The computer programme does not provide for aluminium in a condensed phase as a possible reaction product. This means that in the case of an appreciable negative oxygen sclance calculations have not been carried out below the boiling point for aluminium, 2767 K. The comparison of H-6 and HEX-3 is of some interest since it has been suggested that HEX-3 because of the afterburning effect might have a greater damage potential in confined explosions. Figure 4.2 shows that the pressure for HEX-3 is slightly higher than that for H-6 at loading densities below 0.8 kg/m³. With increasing loading density the HEX-3 performance rapidly becomes quite inferior. However, this comparison is not very realistic, since the explosion products of HEX-3 contain an appreciable amount of latent energy which may become available for mechanical work on expansion and cooling. A more useful approach would probably be to compare the Helmholtz free energy after the explosion products have expanded to ambient values of pressure and temperature. This would then require an estimate of the temperature at which the chemical equilibria become frozen. ^{*}Also other Al-compounds, such as AlN, AlH and Al₄C₃, have been suggested as explosion products. Cook (5), however, has shown that none of these can be important. # 5.3 Fuel-air explosives Fuel-air explosives are of considerable interest, both from a military and a civilian point of view. Figures 4.5 - 4.6 show that maximum pressure and temperatu occur at higher concentrations than the stoichiometric mixture, particularly for acetylene and ethylene oxide. It is further noteworthy that methane with the highest encr content shows the poorest performance in a confined space, whereas ethylene oxide with the lowest energy content gives the highest pressure at stoichiometric mixture. This phonomenon is of course connected with the oxygen requirement for complete combustion, which for methane is more than twice as high as for ethylene oxide. #### References - (1) Strømsøe, E - Estimate of the post-detonation pressure and temperature of TNT charges in closed chamber. TN-X-222, NDRE (1969) - (2) Danielsen, J - Program for beregning av reaksjo produktenes sammensetning, tempe tur og trykk ved eksplosjoner i lukket rom. TN-VM-313, NDRE (19 - (3) Stull, D R et al - JANAF Thermochemical tables, Dow Chemical Company, Midland, Michigan (1965) - (4) Chao, J et al. - JANAF Thermochemical tables, First addendum, Dow Chemical Com Midland, Michigan (1966) - (5) Cook, M A - The Science of High Explosives, Reinhold Publ Corp, New York (19 - (6) Weibull, H R W - Pressures recorded in partially closed chambers at explosion of charges, Annal of the New York Academy of Sciences, Vol 152, are p 357 361 (1968) - (7) James, D J R D Rowe - Measurement of steady overpressu: loading on the wall of a spherical cavity resulting from the detonation of a single HE charge at the cent Atomic Weapons Research Establishment, AWRE HE3/64 (1964) - (8) Proctor, JF WS Filler - A computerized technique for blast loads from confined explosions. 14th Explosives Safety Seminar, New Orleans, Nov 1977 (Advance Copy) (9) - Handbook of Chemistry and Physics, The Chemical Rubber Co, 45 Ed, Cleveland, Ohio (1964) | | | | | | | | | ···· | | |------------------|------------------------------------|----------------|-------|-------|-------|-------|--------|-------|-------| | Explo- | Loading density, kg/n ³ | | | | | | | | | | sion | 0.25 | | | 1.00 | | | 4.00 | | | | pro-
ducts | ТИТ | RDX | PETN | TNT | RĎX | PETN | THT | RDX | PETH | | С | - | | - | ** . | ** | - | 0.44 | • | - | | со | 0.67 | - | - | 25.10 | 4.71 | 2.87 | 122.85 | 36.68 | 27.85 | | co ₂ | 7.04 | 3.37 | 3.95 | 5.72 | 8.80 | 12.95 | 0,01 | 17.38 | 35.40 | | н ₂ | 0.04 | - | - | 4.00 | 0.83 | 0.36 | 43.73 | 10.17 | 4.18 | | н ₂ 0 | 2.55 | 3.36 | 3.15 | 6.55 | 11.50 | 11.42 | 0.03 | 38.70 | 41.68 | | 02 | 2.69 | 6.75 | 7.71 | 0.02 | 3.11 | 5.63 | • | 2.13 | 7.61 | | N ₂ | 33.60 | 35.54 | 33.80 | 38.85 | 44.99 | 37.80 | 58.73 | 84.95 | 55.70 | | OF: | 0.30 | 0.04 | 0.02 | 0.33 | 1.96 | 1.60 | _ | 6.67 | 7.71 | | NO | 0.71 | 0.28 | 0.16 | 0.11 | 1.64 | 1.65 | - | 2.80 | 3.80 | | н | 0.02 | . . | - | 0.60 | 0.39 | 0.16 | 0.38 | 3.69 | 1.76 | | 0 | 0.10 | - | - | 0.03 | 0.56 | 0.43 | _ | 1.41 | 1.92 | | CH ₄ | | _ | | _ | | - | 0.05 | _ | - | | NH3 | | _ | | | | | | | | | т, к | 2634 | 1956 | 1762 | 2986 | 37.04 | 2934 | 2512 | 3521 | 396د | | p,bars | 10.45 | 8.02 | 7.15 | 20.18 | 20.25 | 18.26 | 47.15 | 59.89 | 52.98 | Table 4.1 Composition of explosion products (moles/m³) at various loading densities, TNT, RDX and PETN | | Explo-
sion | · | Loading density, kg/m ³ | | | | | | | | |---|--------------------------------|-------|------------------------------------|-------|-------|-------|-------|-------|-------|--| | | pro- | 0 | 0.4 | | 0.8 | | 1.2 | | 1.6 | | | | ducts | H-6 | нвх-3 | н-е | ‼ВХ−3 | 11-6 | нвх-з | н-6 | HBX-3 | | | | CO | 3.82 | 4.90 | 13.22 | 13.01 | 21.75 | 19.98 | 29.81 | 26.72 | | | | co ₂ | 3.75 | 1.78 | 1.90 | 0.35 | 0.93 | 0.06 | 0.43 | 0.01 | | | | H ₂ | 0.53 | 0.85 | 3.95 | 5.20 | 9.59 | 11.20 | 15.97 | 16.87 | | | | Н20 | 3.91 | 2.46 | 4.58 | 1.16 | 3.35 | 0.28 | 1.89 | 0.03 | | | | 02 | 1.44 | 0.90 | 0.21 | 0.02 | 0.03 | · = | - | - | | | | N ₂ | 34.99 | 34.20 | 38.45 | 37.07 | 41.85 | 39.62 | 45.16 | 42.07 | | | | ОН | 1.10 | 1.22 | 1.31 | 0.52 | 0.78 | 0.04 | 0.32 | _ | | | | NO | 1.07 | 1.08 | 0.59 | 0.22 | 0.25 | 0.01 | 0.08 | - | | | | H | 0.39 | 0.93 | 2.37 | 4.30 | 4.45 | 3.28 | 5.43 | 1.25 | | | | 0 | 0.49 | 0.79 | 0.46 | 0.25 | 0.21 | 0.01 | 0.06 | - | | | | A1 ₂ 0 ₃ | 1.48 | 2.59 | 2.95 | 4.57 | A.31 | 4.65 | 5.31 | 3.69 | | | | Al ₂ 0 | - | - | - | 0.25 | 0.04 | 1.96 | 0.29 | 5.03 | | | | A10 | - | - | 0.02 | 0.16 | 0.06 | 0.07 | 0.08 | 0.01 | | | | A1 ₂ 0 ₂ | | - | _ | - | _ | - | _ | _ | | | | Al | - | | 0.01 | 0.59 | 0.14 | 2 27 | 0.50 | 2 22 | | | L | | | ÷ | | | | 2.27 | 0.59 | 3.33 | | | | т, к | 3186 | 3448 | 3529 | 3756 | 3624 | 3438 | 3593 | 2978 | | | L | p, hars | 13.64 | 14.08 | 19.68 | 19.70 | 26,38 | 22.52 | 29.91 | 23.60 | | Table 4.2 Composition of explosion products (moles/ m^3) at various loading densities, H-6 and HBX-3 Figure 4.1 Post-detonation temperature for confined explosion Figure 4.2 Post-detonation pressure for confined explosions Figure 4.3 Post-detonation temperature for confined explosion Figure 4.4 Post-detonation pressure for confined explosions Figure 4.5 Post-detonation temperature for confined explosion Figure 4.6 Post-detonation pressure for confined explosions